\mathbf{T}	<u> </u>	<u> </u>		NAME OF A COURT OF	4 TT 1
11	пиложение к Соновнои об	разовательной программе средне	าด ดูกเมเครด ดูกกลวด	OBAHUG MACIV (.() I No	$\perp \alpha \square \alpha \pi \mu \pi \sigma \sigma \tau m \sigma \sigma \tau m \sigma \sigma \tau m \sigma \sigma \sigma \sigma \sigma \sigma \sigma \sigma$
	prisionarine is ochobitori oc	разовательной программе средне	о общего образо	obuilin milios com m	I WITOMINGOPYM

УТВЕРЖДЕНА приказом директора № 315/1-ОД от 29.08.2025

Рабочая программа элективного курса «Методы решения физических задач» для 10-11 классов

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа элективного курса по физике для 10-11 классов «Методы решения физических задач» (далее по тексту - программа) является компонентом Основной образовательной программы основного общего образования МАОУ СОШ № 1 «Полифорум».

Программа разработана на основе Элективного курса «Методы решения физических задач»: 10-11 классы», Зорин Н. И., М., ВАКО, 2015 г. «Мастерская учителя».

Место элективного курса в учебном плане. Элективный курс рассчитан на два года обучения в 10-11 классах, всего 68 часов, 1 час в неделю.

Решение задач по физике — один из основных методов обучения учащихся. При решении задач школьникам дополнительно сообщаются знания о конкретных объектах и явлениях, создаются и решаются проблемные ситуации, а также сведения из истории науки и техники. Одной из важнейших целей современного физического образования является формирование умений учащихся работать со школьной учебной физической задачей. В этой связи актуальность данного курса определяется направленностью на формирование у школьников практических, интеллектуальных и творческих компетентностей; личностных качеств (целеустремленность, настойчивость, аккуратность, внимательность, дисциплинированность); развитие эстетических чувств и самостоятельности. В современном мире на каждом рабочем месте необходимы умения ставить и решать нестандартные задачи на основе достижений науки и техники.

Элективный курс предназначен для учащихся 10-11 классов, желающих углубить знания по физике и приобрести навыки в решении задач разного уровня сложности. Этот курс углубляет и систематизирует знания учащихся по физике и способствует успешной сдаче ЕГЭ за курс средней школы. Курс рассчитан на 68 часов, по одному часу в неделю. Программа курса составлена на основе Федерального компонента государственного стандарта среднего образования, обязательного минимума содержания физического образования и рабочих программ для общеобразовательных школ. Повторение теоретических вопросов каждого урока сопровождается заданиями, которые формируют умения и навыки, такие как умение, анализировать, сравнивать, обобщать; организовывать свою работу; самостоятельно составлять алгоритм решения задач, выделять главное. Курс создает условия для развития различных способностей и позволяет воспитывать дух сотрудничества, уважительного отношения к мнению оппонента. В ходе изучения данного курса особое внимание уделяется на развитие умений учащихся решать вычислительные, графические, качественные и экспериментальные задачи.

Цель данного предмета углубить и систематизировать знания учащихся 10-11 классов по физике путем решения разнообразных задач и способствовать их профессиональному определению.

Задачи:

- развивать интерес к физике, к решению физических задач;
- совершенствовать и углублять полученные в основном курсе знания и умения;
- сформировать представление о постановке, классификации, приемах и методах решения школьных физических задач;
- осуществить связь изучения физики с жизнью;

- формировать у школьников профессиональные предпочтения, связанные с технической направленностью;
- разбирать задания ЕГЭ.

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ УЧАЩИХСЯ

В результате изучения учебного предмета «Методы решения физических задач» в 10-11 классах ученик должен: знать/понимать

- 1. смысл физических величин, физических формул и уметь их применять при решении задач;
- 2. смысл физических законов и уметь их применять при решении задач;
- 3. уметь описывать и объяснять физические явления;
- 4. использовать физические приборы и измерительные инструменты для измерения физических величин;
- 5. представлять результаты измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости;
- 6. выражать результаты измерений и расчетов в единицах Международной системы;
- 7. приводить примеры практического использования физических знаний о механических явлениях;
- 8. осуществлять самостоятельный поиск информации естественнонаучного содержания с использованием различных источников (учебных текстов, справочных и научно-популярных изданий, компьютерных баз данных, ресурсов Интернета), ее обработку и представление в разных формах (словесно, с помощью графиков, математических символов, рисунков и структурных схем);
- 9. использовать приобретенные знания и умения в практической деятельности и повседневной жизни для рационального использования простых механизмов, обеспечения безопасности в процессе использования транспортных средств.

СОДЕРЖАНИЕ КУРСА

Правила и приемы решения физических задач. Что такое физическая задача? Физическая теория и решение задач. Составление физических задач. Основные требования к составлению задач. Общие требования при решении физических задач. Выполнение плана решения задачи. Анализ решения и оформление решения. Типичные недостатки при решении и оформлении решения задачи. Различные приемы и способы решения: геометрические приемы, алгоритмы, аналогии. Методы размерностей, графические решения, метод графов и т.д.

Операции над векторными величинами Скалярные и векторные величины. Действия над векторами. Задание вектора. Умножение вектора на скаляр. Сложение векторов. Проекции вектора на координатные оси и действия над векторами. Проекции суммы и разности векторов.

Равномерное движение. Средняя скорость (по пути и перемещению) Перемещение. Скорость. Прямолинейное равномерное движение. Графическое представление движения. Средняя путевая и средняя скорость по перемещению. Мгновенная скорость.

Закон сложения скоростей Относительность механического движения. Радиус-вектор. Формула сложения перемещения.

Одномерное равнопеременное движение Ускорение. Равноускоренное движение. Равнозамедленное и равноускоренное движение. Перемещение при равноускоренном движении. Свободное падение. Ускорение свободного падения. Начальная скорость. Движение тела брошенного вертикально вверх.

Двумерное равнопеременное движение Движение тела, брошенного под углом к горизонту. Определение дальности полета, времени полета. Максимальная высота подъема тела при движении под углом к горизонту. Время подъема до максимальной высоты. Скорость в любой момент движения. Уравнение траектории движения.

Динамика материальной точки. Поступательное движение Координатный метод решения задач по механике.

Движение материальной точки по окружности Период обращения и частота обращения. Циклическая частота. Угловая скорость. Перемещение и скорость при криволинейном движении. Центростремительное ускорение. Закон Всемирного тяготения.

Импульс. Закон сохранения импульса Импульс тела. Импульс силы. Явление отдачи. Замкнутые системы. Абсолютно упругое и неупругое столкновение.

Работа и энергия в механике. Закон сохранения механической энергии Потенциальная и кинетическая энергия. Полная механическая энергия.

Статика и гидростатика Условия равновесия тел. Момент силы. Центр тяжести тела. Виды равновесия тела. Давление в жидкости. Закон Паскаля. Гидравлический пресс. Сила Архимеда. Вес тела в жидкости. Условия плавания тел.

Основы молекулярно-кинетической теории Количество вещества. Масса и размер молекул. Основное уравнение МКТ. Энергия теплового движения молекул. Зависимость давления газа от концентрации молекул и температуры. Скорость молекул газа. Уравнение состояния идеального газа. Изопроцессы.

Основы термодинамики Внутренняя энергия одноатомного газа. Работа и количество теплоты. Первый закон термодинамики. Адиабатный процесс. Изменение внутренней энергии в процессе совершения работы. Тепловые двигатели.

Свойства паров, жидких и твердых тел Свойства паров. Влажность воздуха. Поверхностное натяжение. Капиллярные явления. Механические свойства твердых тел.

Электрическое поле Закон Кулона. Напряженность поля. Проводники в электрическом поле. Поле заряженного шара и пластины. Энергия заряженного тела в электрическом поле. Разность потенциалов. Электроемкость конденсатора. Энергия заряженного конденсатора.

Законы постоянного тока Сила тока. Сопротивление. Закон Ома. Работа и мощность тока. Электродвижущая сила. Закон Ома для замкнутой цепи.

Электрический ток в различных средах Электрический ток в металлах и электролитах. Электрический ток в газах, вакууме, полупроводниках.

Электромагнитные колебания Магнитное поле тока. Магнитная индукция. Магнитный поток. Закон Ампера. Сила Лоренца. Магнитные свойства вещества.

Электромагнитные волны Различные свойства электромагнитных волн: скорость, отражение, преломление, интерференция, дифракция, поляризация. Геометрическая оптика: зеркала, оптические схемы. Классификация задач по СТО и примеры их решения.

Квантовая физика Законы фотоэфекта. Характеристики фотонов. Атомная и ядерная физика.

Тематическое планирование. 10 класс

Nº	Тема урока	Содержание образования	Количество
			часов
1	Что такое физическая задача.	Что такое физическая задача. Состав физической задачи. Классификация физических задач по требованию, содержанию, способу задания, способу решения. Примеры задач всех видов. Составление физических задач. Основные требования к составлению задач.	
2	Общие требования. Этапы решения задач.	Общие требования при решении физических задач. Этапы решения физических задач. Различные приемы и способы решения: геометрические приемы, алгоритмы, аналогии. Работа с текстом задачи. Анализ физического явления; формулировка идеи решения (план решения). Числовой расчет. Анализ решения и его значение. Оформление решения задачи. Различные приемы и способы физических задач: алгоритмы, аналогии, геометрические приемы, метод размерностей, графические решения.	
3	Прямолинейное равномерное движение.	Координатный и графический методы решения задач по механике. Прямолинейное равномерное движения. Графическое представление движения и решение задач на РД различными способами (координатный и графический).	
4	Решение задач на среднюю скорость.	Средняя скорость. Графический способ решения задач на среднюю скорость.	1
5	Ускорение. Прямолинейное равноускоренное движения.	Прямолинейное равноускоренное движения (РУД). Равнопеременное движение: движение при разгоне и торможении. Перемещение при равноускоренном движении.	1
6	Графическое представление РУД.	Графический и координатный методы решения задач на РУД. Зависимость скорости от времени; зависимость ускорения от времени; зависимость координаты от времени. Способ параллелограмма.	1
7	Решение задач на законы Ньютона по алгоритму.	Решение задач на основные законы динамики: Ньютона, законы для сил тяготения, упругости, трения, сопротивления. Задачи на определение коэффициента трения при скольжении по дереву. Задачи на расчет силы трения в машинах. Способы уменьшения вредного проявления трения: система смазки автомобилей, применение подшипников.	

8	1, ,	Решение задач на движение материальной точки, системы точек, твердого тела под действием нескольких сил по горизонтальнойповерхности	
9	Движение тел по наклонной плоскости.	Решение задач на движение материальной точки, системы точек, твердого тела под действием нескольких сил. Координатный метод решения задач: движение тел по наклонной плоскости.	
10	Вес движущегося тела.	Вес тела, движущегося с ускорением (вверх, вниз) Движение тела, брошенного вертикально вверх	1
11	Движение связанных тел.	Решение задач на движение материальной точки, системы точек, твердого тела под действием нескольких сил. Координатный метод решения задач: движение связанных тел и с блоками.	
12	Движение тела, брошенного горизонтально	Определение дальности, времени полета, максимальной высота подъема при движении тела, брошенного горизонтально	1
13	Движение тел по окружности	Характеристики движения тел по окружности: угловая скорость, циклическая частота, центростремительное ускорение, период и частота обращения. Расчет задач на нахождение кинематических величин различных машин.	
14	Центр тяжести. Условия и виды равновесия. Момент силы.	Плечо силы. Момент силы. Способы определения центра масс. Алгоритм решения задач на нахождение центра масс. Определение центра масс и алгоритм решения задач на его нахождение.	
15	Проверочная работа по теме «Кинематика и динамика».	Разбор задач из тестов ЕГЭ за разные годы по кинематике и динамике.	1
16	Решение задач на закон сохранения импульса и реактивное движение.	Решение задач на законы сохранения импульса и реактивное движение	1
17	Работа и мощность. КПД механизмов.	Решение задач на определение работы и мощности. КПД механизмов. Динамический и энергетический методы решение задач на определение работы и мощности.	1

18	Потенциальная и кинетическая энергия.	Решение задач на закон сохранения и превращения энергии. Подбор, составление и решение по интересам различных сюжетных задач: занимательные, экспериментальные, на бытовом содержании с техническим содержанием. Знакомство с примерами решения задач по механике городских олимпиад.	1
19	Решение задач с помощью законов сохранения.	Разбор задач из тестов ЕГЭ за разные годы на применение законов сохранения.	1
20	Давление в жидкости. Закон Паскаля. Сила Архимеда.	Решение задач на давление в жидкости, закон Паскаля. Действие силы Архимеда в жидкости и газе. Вес тела в жидкости. Условия плавания тел. Воздухоплавание. Решение задач на закон Архимеда.	1
21	Решение задач на гидростатику с элементами статики.	Решение задач на гидростатику с элементами статики динамическим способом.	1
22	Проверочная работа по теме «Законы сохранения. Гидростатика».	Разбор задач из тестов ЕГЭ за разные годы на законы сохранения и гидростатику.	1
23	Решение задач на основное уравнение МКТ и его следствия.	Решение задач на основные характеристики частиц (масса, размер, скорость). Решение качественных задач на основные положения и основное уравнение МКТ.	1
24	Решение задач на характеристики состояния газа в изопроцессах.	Графические задачи на изопроцессы. Решение задач на описание поведения идеального газа: основное уравнение МКТ, определение скорости молекул, характеристики состояния газа в изопроцессах.	1
25	характеристик влажности воздуха.	Решение задач на свойства паров: использование уравнения Менделеева-Клапейрона, характеристика критического состояния. Решение задач на определение характеристик влажности воздуха.	1
26	Решение задач на определение характеристик твердого тела.	Решение задач на определение характеристик твердого тела: абсолютного и относительного удлинений, запас прочности, сила упругости. Закон Гука.	1
27		Разбор задач из тестов ЕГЭ за разные годы на строение и свойства газов, жидкостей и твердых тел.	1

28	Внутренняя энергия, работа и количество теплоты.	Внутренняя энергия, работа и количество теплоты. Решение задач. Использование конвекции для сушки сельскохозяйственных продуктов. Практические способы измерения теплопроводности почвы (полив, механическая обработка, внесение удобрений).	
29	Алгоритм и решение задач на уравнение теплового баланса.	Уравнение теплового баланса. Использование явлений плавления и отвердевания, испарения и конденсации (сварка металлов, паяние, тепловая обработка и т.д.)	1
30	Первый закон термодинамики. Адиабатный процесс.	Первый закон термодинамики. Адиабатный процесс. Решение количественных графических задач на вычисление работы, количество теплоты, изменения внутренней энергии. Решение комбинированных задач на первый закон термодинамики.	
31	Тепловые двигатели. КПД двигателя	Тепловые двигатели. Расчет КПД тепловых установок. Графический способ решения задач на 1 и 2 законы термодинамики. Решение задач на тепловые двигатели. Определение КПД по известной мощности двигателя.	
32	Закон сохранения электрического заряда. Закон Кулона.	Закон сохранения электрического заряда. Закон Кулона. Решение задач по алгоритму на сложение электрических сил с учетом закона Кулона в вакууме и среде.	1
33	Решение задач на принцип суперпозиции полей (напряженность, потенциал).	Решение задач по алгоритму на сложение напряжённости и потенциала.	1
34	_	Электроемкость плоского конденсатора. Энергия электрического поля. Решение задач на описание систем конденсаторов. Задачи разных видов на описание электрического поля различными свойствами: силовыми линиями, напряженностью, разностью потенциалов, энергией.	

Тематическое планирование. 11 класс

Nº	Тема урока	Содержание образования	Количество
			часов
1	Решение задач на законы соединения проводников для участка цепи.	Задачи на последовательное, параллельное и смешанное соединение проводников.	1
2	Решение задач на закон Ома для полной цепи.	Задачи на последовательное, параллельное и смешанное соединение проводников с учётом внутреннего сопротивления источника тока.	1
3		Вычисление работы и мощности электрического тока при различных соединениях потребителей.	1
4	Электрический ток в металлах и полупроводниках.	Электрический ток в металлах. Зависимость сопротивления проводника от температуры. Решение задач на ток в металлах. Решение задач на описание постоянного электрического тока полупроводниках: характеристика носителей, вольтамперная характеристика конкретных явлений и др.	
5	Электролиты и законы электролиза.	Решение задач на описание постоянного электрического тока в электролитах. Решение задач на законы электролиза.	1
6	Электрический ток в вакууме и газах.	Электрический ток в вакууме и газах. Решение задач на описание постоянного электрического тока в вакууме, газах.	1
7	Проверочная работа по теме «Законы постоянного электрического тока».	Разбор задач из тестов ЕГЭ за разные годы на законы постоянного электрического тока.	1
8	Задачи разных видов на описание магнитного поля тока.	Задачи разных видов на описание магнитного поля тока и его действия: вектор магнитной индукции и магнитный поток, сила Ампера и сила Лоренца. Движение заряженных частиц в магнитных и электромагнитных полях (алгоритм решения задач).	

	1		
9	Решение задач на явление электромагнитной индукции и самоиндукции	Задачи разных видов на описание явления электромагнитной индукции и самоиндукции: закон электромагнитной индукции, правило Ленца, индуктивность. Решение графических задач. Решение задач на расчет участков цепи, имеющей ЭДС.	
10	Решение задач на механические и магнитные явления.	Задачи на движение частиц и проводников под действием силы тяжести, силы Ампера, силы Лоренца.	1
11	Механические колебания. Расчет параметров механических колебаний.	Расчёт периода, частоты и других характеристик при изменении условий в колебательной системе.	1
12		Решение задач на электромагнитные гармонические колебания и их характеристики разными методами (числовой, графический, энергетический).	1
13	Решение задач на расчет параметров электрических цепей переменного тока.	Переменный электрический ток: метод векторных диаграмм. Полное сопротивление цепи переменного тока.	1
14	Проверочная работа по теме «Электродинамика»	Разбор задач из тестов ЕГЭ за разные годы по электродинамике.	1
15	Анализ и разбор наиболее трудных задач по электродинамике.	Разбор заданий ЕГЭ.	1
16	Задачи на волновые явления.	Определение характеристик механической волны.	1
17	Задачи на описание различных свойств электромагнитных волн.	Решение задач на описание различных свойств электромагнитных волн: скорость, отражение, преломление.	1
18.	Отражение и преломление света.	Решение задач на использование закона преломления.	
19	Линзы. Изображения в линзах.	Решение задач по геометрической оптике: зеркала, призмы, линзы.	1

20	Системы линз.	Задания ЕГЭ по геометрической оптике.	1
21	Волновая оптика	Решение задач на явления на явления интерференции и дифракционную решётку.	1
22	Классификация задач по СТО и примеры их решения.	Задачи на изменение длины, промежутков времени, закон сложения скоростей.	1
23	Закон сохранения массы-энергии в СТО.	Расчёт массы и энергии покоя и движения.	
24	Законы фотоэффекта.	Решение задач на фотоэффект: «красная граница фотоэффекта», работа входа.	1
25	Фотон. Энергия и импульс фотона.	Решение задач характеристики фотона.	
26	Задачи по квантовой физике.	Задачи ЕГЭ по квантовой физике	
27	Состав атома и ядра. Ядерные реакции	Составление ядерных реакций, закон сохранения зарядового и массового чила.	1
28	Закон радиоактивного распада.	Решение задач на определение периода полураспада.	1
29	Энергия связи. Дефект масс.	Расчёт энергии связи, дефекта масс и энергетического выхода ядерных реакции.	1
30	Проверочная работа по теме «Электромагнитные колебания и волны. СТО».	Разбор задач из тестов ЕГЭ за разные годы по электромагнитным колебаниям и волнам и СТО. Разбор тестов, составленных учениками по данной теме.	1
31	Методика решения качественных задач.	Разбор качественных задач по различным темам.	1

32-	Итоговая работа с элементами ЕГЭ	Повторение материала.	3
33-			
34			

Перечень учебно-методических средств обучения

Литература для учителя

Зорин Н. И. «Элективный курс «Методы решения физических задач»: 10-11 классы», М., ВАКО, 2007 г. (мастерская учителя).

Каменецкий С. Е., Орехов В. П. «Методика решения задач по физике в средней школе», М., Просвещение, 1987 г.

Ромашевич А. И. «Физика. Механика. 10 класс. Учимся решать задачи», М., Дрофа, 2007 г.

Балаш В. А. «Задачи по физике и методы их решения», М., просвещение, 1983 г.

Яворский Б. М., Селезнев Ю. А. «Справочное руководство по физике для поступающих в вузы и для самообразования», М., Наука, 1989 г.

Бобошина С. Б. «ЕГЭ. Физика. Практикум по выполнению типовых тестовых заданий», М., Экзамен, 2009 г.

Литература для обучающихся

Трофимова Т. И. «Физика для школьников и абитуриентов. Теория. Решение задач. Лексикон», М., Образование, 2003 г.

Ромашевич А. И. «Физика. Механика. Учимся решать задачи. 10 класс», М., Дрофа, 2007 г.

Балаш В. А. «Задачи по физике и методы их решения», М., Просвещение, 1983 г.

Козел С. М., Коровин В. А., Орлов В. А. и др. «Физика. 10—11 кл.: Сборник задач с ответами и решениями», М., Мнемозина, 2004 г.

Малинин А. Н. «Сборник вопросов и задач по физике. 10—11 классы», М., Просвещение, 2002 г.

Меледин Г. В. «Физика в задачах: экзаменационные задачи с решениями», М., Наука, 1985 г.

Черноуцан А. И. «Физика. Задачи с ответами и решениями», М., Высшая школа, 2003 г.

Степанова Г. Н. «Сборник задач по физике: для 10-11 классов общеобразовательных учреждений», М., просвещение, 2000 г.